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J.  Phys. A: Math. Gen. 15 (1982) 3531-3534. Printed in Great Britain 

Brute force method for solving Ernst’s equation and limits 
of the Kinnersley-Chitre solution 

C Hoenselaers 
Max-Planck-Institut fur Physik und Astrophysik, Institut fur Astrophysik, Karl-Schwar- 
zschild-Strage 1, 8046 Garching/Munchen, Germany 

Received 13 April 1982 

Abstract. The programme POLYNOM is used to calculate a new solution of Ernst’s 
equation. We then show that the solution is an extreme limit of the so-called Kinnersley- 
Chitre solution. 

1. Introduction 

Since the development of the various methods for generating solutions of Ernst’s 
equation (cf e.g. Cosgrove 1980) the ‘brute force’ method has slightly fallen into 
disrepute. One makes an ansatz, assumes a certain form for the Ernst potential, plugs 
that into the equation and tries not to lose track of the various equations or constraints 
which emerge. 

In this way Tomimatsu and Sat0 guided by experience gained from studies of 
approximate solutions of Ernst’s equation (Sato and Tomimatsu 1973), discovered 
their solution (Tomimatsu and Sat0 1973). Ernst, too, derived a series of unfortunately 
not asymptotically flat solutions (Ernst 1977). 

The main obstacle for the application of the brute force method has been the 
sheer length of the necessary calculations. However, we have the programme 
POLYNOM at our disposal and we can use it to calculate the right-hand side of Ernst’s 
equation for a specific ansatz. 

This will be done in 9 2. A new solution will be discovered. Section 3 shows that 
this solution is in fact an extreme case of the so-called Kinnersley-Chitre (1978) 
solution and it will be rederived in a way similar to the extreme limit of the Kerr 
solution. 

2. Brute force method 

Consider the Ernst equation 

(&* - 1)V:c = 25*v52 

& = p d .  (2.2) 

(2.1) 
and make the usual ansatz that e is a rational function 

a and /3 are assumed to be polynomials in prolate spheroidal coordinates x ,  y 
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2 1/2  
(p  = [(x2- 1)(1 - y  )] 
It can be shown that for 5 which describe asymptotically flat solutions 

,$(--r, -cos 6) = -((r, cos e). 

, z =xy)  or polar coordinates r, cos e (p = r sin e, z = r cos e). 

,$(-x, - Y  1 = --e(& Y ), 

Hence a and p are sums of homogeneous polynomials of even, respectively odd, 
degree in x, y or r, cos 8. 

Inserting the ansatz (2.2) into the Ernst equation one obtains 

((Ya * -pp*)(Pv:CX - avip) - 2{a *pva ' + p*Cyvp' - (a** + Pp *)vavp}  = RHS 0. 

(2.3) 
For a and P to constitute a solution, the right-hand side RHS has to vanish. The 
operators are 

v:f = [a,(x'- i )a ,  +ay (1 - y2)aylf,  v fvg  = (x2 - l)afa,g + (1 - Y2)ayfayg, 
respectively 

V?f = (sin ea,r2 a, +ae sin e ae)f, 
Incidentially it may be remarked that all the substitutions x *y, x + -x, y + -y, 
r + -r,  cos 8 + -cos 8 map solutions into solutions. Furthermore it should be noted 
that if one assumes the leading homogeneous polynomials in a and p to be of orders 
S and S - 1, the leading one of RHS is of order 48 - 3. The polynomial of order 48 - 1 
in RHS vanishes identically. 

Now expand a and p in x respectively r. The Laplacian in prolate spheroidals 
changes the order in x, while the Laplacian in polar coordinates leaves the order of 
the r expansion intact. 

Vfvg = sin e(r2arf a,g +aefaeg). 

Therefore we shall in the following use polar coordinates. 
It is easy to see that the ro term in RHS contains only contributions from the r o  

terms in a and p. This means that the ro terms in a and p have to be r-independent 
solutions of Ernst's equation, namely 

a =f(e)A:, P =f(e)Af ,  A i  = ~ [ ( C O S B + ~ ) ~ * ( C O S O - ~ ) ' ] ,  

with some (so far) arbitrary function f(0). From the already published solution 
(Hoenselaers 1981) we observe, however, that the terms which contain the highest 
exponents of the appearing parameters are of the form 

sinsZ-'@A: 

if a is a polynomial of order 6'. 

symmetric with respect to the equatorial plane 8 = ~ / 2 ,  i.e. 
If we restrict ourselves to S = 2  and furthermore assume the solution to be 

a (r, -cos e)  = a * ( r ,  cos e), p ( r ,  -cos e) = P*(r ,  cos e), (2.4) 
we can make the ansatz 

p = a i  sin20A! + br sin' 8 +cr ,  

where, at present, we are only interested in the r1 term of RHS. Higher r terms in a 
and p do not contribute. a, 6 ,  etc are constants. We find the conditions 

a = a sin2 t9A: + i cos 8 (dr sin2 8 +er) ,  

c + e = O ,  4b + 5 c  -2d = O .  
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Now we modify the ansatz for a and p 

p = a i  sin2 8A?+ r(b sin' 8 +2c)+id  cos 8 r2, 

a = a  sin28A?+ircos8[(2b+5c)sin28-2c]+r2(e sin8+f) ,  

calculate the r2 term of RHS and take account of the emerging relations among the 
constants. 

It is now clear how this process can be repeated. The reason for choosing the 
iterative method instead of simply inserting the most general ansatz under our assump- 
tions into the Ernst equation and then examining the RHS is that the Ansatz would 
contain ten constants and the RHS would run up to about 1200 terms. 

In any case, at the end of the calculation there remains a solution depending on 
two parameters 

a = r4 +2ab cos2 8 r2-ab3 sin2 8 (1 +cos2 8 )  +ir cos 8 [ (a  -b)r2-4ab2 sin2 e ] ,  
( 2 . 5 ~ )  

p = (a + b)r3- 2ab2 sin2 8 r - 2i cos 8ab(r2+sin2 8 b2). (2.5b) 

If we set either a or b to zero, the solution reduces to the extreme Kerr solution. 
Further details about this solution will be published elsewhere (Hoenselaers and He0 
1982). 

3. Limits of the Kinnersley-Chitre solution 

By application of the so-called Pk transformations to the S = 2 Voorhees solution, 
Kinnersley and Chitre (1978) derived the following solution of Ernst's equation: 

a = p2(x4 - 1) - 2ipqxy(x2 - y 2 )  +q2(y4 - 1) - 2iA (x2 + y 2  - 2x2y2) 

- 2ipxy (x2 + y - 2) + ( A 2  - $)(x2 - y2)', 

/3 =2px(x2-1)-2iqy(l -y2)-2i(x2-y2)[x(pA +iq@)-y(pp +iqA)], 

( 3 . 1 ~ )  

(3.lb) 

p 2 + q 2  = 1. 

For A = p = 0 this reduces to the S = 2 Tomimatsu-Sat0 solution. For q = 0 respec- 
tively p = 0 it reduces to the solutions quoted in Hoenselaers et a1 (1979b). The full 
metric for this solution has been given by Yamazaki (1980). Kinnersley and Kelley 
(1974) have shown how to take the p + 0 limit of the Tomimatsu-Sat0 solutions while 
keeping px" finite for odd n.  n = 1 always yielded the extreme Kerr solution, while 
other n gave new, not asymptotically flat solutions. 

Here we shall investigate the limit x + 00 and show how the parameters have to 
be chosen for the limit to yield a finite result. We replace 

x + r/ros, y = COS e, (3.2) 

and thereby introduce a dimensionless parameter E. Before taking the limit E + 0 we 
have to keep in mind that we can multiply a and p by E " (n  = 0 .  , , 3 ) .  

Let us first examine the case n = 3. The only term multiplied by E-'  in this case 
is the x4 term in a. Hence 

2 2 2  p + A  - p  =E.  



3534 C Hoenselaers 

The symbol =E' means that the expression has to go to zero at least as fast as E '. If 
we thus set, for instance, p = cos 4 + &p1, A = cos C# cosh I) + E A  1, p = cos C# sinh I// + &p1 
and let E + 0, we recover the extreme Kerr solution. 

Detailed calculation shows also that nothing interesting comes up for n = 1,2 .  For 
n = 0, however, we have the following order equations: 

(3.3) p 2 + A 2 - ~  = E ,  P +P4 - - E 3 ,  w 4 + P = E 3 ,  A ~ = E ,  2 4  3 

2 2 2  3 2 p - A  = E ,  A = & ,  Pp - e 2 ,  A q = E ,  

CL = E ,  p q  = E ,  P = E ,  pq = E .  

The only consistent solution is 
2 2 P =P i& + P 2 E 2 + P 3 E 3 ,  A = A ~ E  , p = - P I E  - p 2 s  + k 3 E 3 .  

(3.4) 
If we now let E + 0 we find 

a = r4[2p,(p3 + p3)  + A  ;]+2 cos2 e r 2 p :  -sin2 e (1 +cos2 e) 

p = r3[2(p3 + p3) + 6 p : ]  - 2 cos8 r2A2 - 2 sin2@ pl r  
+i{cost9 r3 [p3-2 (p3+p3) ]+2A2r2(cos20  -sin28)-4 sin2@ cost9pl}, ( 3 . 5 ~ )  

(3.5b) 

ro has been absorbed into the other constants. It is obvious that p 3  + p3 can be replaced 
by a single constant. 

For p1 = 0 we recover the solution obtained from a HKX rank-1 transformation 
applied to flat space (Hoenselaers et a1 1979a). If A: = -2pl(p3 +p3)  the solution will 
not be asymptotically flat and is actually a two-parameter generalisation of the solutions 
derived in Kinnersley and Kelley (1974). For A 2  = 0 we arrive at the solution of § 2. 

-i(2h2plr3+2p1cos 8r2+2s in20  cos8). 
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